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Molecular dynamics comparative study of Lennard-Jones �-6 and exponential �-6 potentials:
Application to real simple fluids (viscosity and pressure)
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In this work, using molecular dynamics simulation, the viscosity �dynamic property� and the pressure �static
property� of spherical fluid particles interacting through Lennard-Jones �-6 and exponential �-6 potentials are
computed. Simulations are performed for � going from 10 to 20 for the Lennard-Jones potential and from 12
to 22 for the exponential one. Six different thermodynamic states are tested that cover a large range of
conditions, from sub- to supercritical temperature and from low to high density. To compare in a consistent
manner the results for the various potentials tested, the simulations are carried out for the same set of reduced
thermodynamic conditions �using the critical point�. It is found that a perfect corresponding-states formulation
is not possible between these potentials. Then, these potentials are applied on real simple fluids �argon, oxygen,
nitrogen, methane, ethane, and one mixture, air� and the calculated viscosity and pressure values are compared
with reference values. It appears that, using the appropriate �, both potential families lead to a good accuracy
in pressure and viscosity using the same set of molecular parameters for both properties, the average absolute
deviations being always lower than 5% for the studied states. In addition, it is shown that the exponential
potential results do not outperform the Lennard-Jones ones. Furthermore, for all compounds except for meth-
ane, the best results are obtained for the Lennard-Jones 12-6 and the exponential 14-6 potentials. This result
partly explains why, despite no theoretical background, the Lennard-Jones 12-6 potential is so widely used.
Finally, it is shown that a van der Waals one-fluid model performs extremely well for the studied mixture �air�.
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I. INTRODUCTION

Among the intermolecular interaction potentials, the
Lennard-Jones �LJ� 12-6 one is by far the most widely used
in molecular simulations. Despite its simplicity, it has been
shown to be able to exhibit most of the features experimen-
tally found in fluid states. Furthermore, its formulation al-
lows a relatively quick computation of the interaction in mo-
lecular dynamics �MD� simulations, which is a clear
advantage compared to other interaction potentials. How-
ever, from a theoretical point of view, it is well-known �1�
that the LJ 12-6 potential is not a true representation of even
two-body interactions between argon atoms. It is an effective
many-body empirical potential. The main weakness of the LJ
12-6 potential comes from the fact that it represents the de-
cay of repulsive interaction by an inverse-12-power depen-
dence on intermolecular separation whereas intermolecular
repulsion decays exponentially. This point is of importance
since it appears clearly that the structural properties of a
normal fluid are primarily determined by the intermolecular
short-range repulsive interactions �2,3�.

An alternative to the classical two-parameter Lennard-
Jones 12-6 potential, which can be correctly approximated
by a short-range attractive potential �4�, can be found in the
more general three-parameter Lennard-Jones �-6 potential
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and in the three-parameter exponential �-6 �exp� potential
family �5�. The last one uses an exponential formulation of
the repulsive part of the potential. It is important to underline
that up to now less attention has been paid to the exp poten-
tials in molecular simulations. But recent simulations have
shown the improved efficiency of the exp-6 potential over
the LJ one for thermodynamic �6� and even for dynamic
properties such as viscosity �7�. Concerning the influence of
the repulsive part of the potential, it should be mentioned
that some interesting results have been found recently for the
purely repulsive soft sphere fluids �8�, as well for the
Lennard-Jones �-6 potential family �9�.

Presently there is a demand for simple force fields to be
able to accurately describe several properties simultaneously,
which is not an easy task especially when static and dynamic
properties are involved; see, for example, �10� for fluids
modeled by a LJ 12-6 potential, �11� for molecular fluids
modeled by inter- and intramolecular potentials, and �12� for
polymer modeled by the LJ�freely jointed �FENE� ap-
proach. The first purpose of this paper is to compare the
viscosity �dynamic property� and the pressure �static prop-
erty� provided by molecular dynamics simulations on spheri-
cal fluid particles interacting through two types of force field,
LJ and exp potentials, for various slopes of the repulsive part
of the potential. The second purpose of this paper is to test
the ability of the various potentials to reproduce, at the same
time, the pressure and the viscosity of some simple real flu-
ids in various thermodynamic states. To compare in a con-

sistent manner the results for the various potentials tested,
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the simulations have been carried out for the same set of
reduced thermodynamics conditions �using the critical point
as the scaling parameter�.

Simulations are performed for � going from 10 to 20 for
the LJ potential and from 12 to 22 for the exp one �which
corresponds approximately to the same range of repulsive
stiffness for both potentials�. The six different states for
which the simulations are performed for each potential cover
a large range of thermodynamic conditions, from sub- to
supercritical temperature and from low to high density. Then,
results are applied on real simple compounds. The aim is to
determine the relative efficiency of the LJ and of the exp
potentials in modeling at the same time both viscosity and
pressure of five simple fluids �argon, oxygen, nitrogen, meth-
ane, and ethane� and one mixture �air� with the same set of
molecular parameters. Finally, the efficiency of a simple one-
fluid approximation, the van der Waals one, is tested on the
mixture studied �air�.

II. THEORY

A. Fluid models

Interactions between a particle �i� and a particle �j� have
been modeled using two families of effective potentials, the
Lennard-Jones �-6 and the Buckingham or exponential �-6
ones, which can be written as �13�

Utot = Urepulsive − �ij� �ij

�ij − 6
�� rmij

rij
�6

�1�

where for the Lennard-Jones potential

Urepulsive = �ij� 6

�ij − 6
�� rmij

rij
��ij

�2�

and for the exponential-6 potential

TABLE II. Dimensionless critical parameters
potential.

� 10 12 14

Tc
*�LJ� 1.45 1.299 1.196

�c
*�LJ� 0.314 0.316 0.32

Pc
*�LJ� 0.136 0.123 0.114

Tc
*�exp� 1.404 1.253

�c
*�exp� 0.314 0.321

Pc
*�exp� 0.132 0.120

TABLE I. Ratios rmij /�

� 10 12 14

LJ 1.13622 1.12246 1.11172

Exp 1.14122 1.12473
061201
Urepulsive = �ij� 6

�ij − 6
�e−�ij�rij/rmij

−1� �3�

where �ij is the potential strength, rmij the distance at which
the potential is minimum, �ij the stiffness of the repulsive
slope, and rij the intermolecular separation. In this work �
goes from 10 to 20 for the Lennard-Jones potential and from
12 to 22 for the exponential-6 one. It should be noted that the
larger the repulsive exponent �ij, the more repulsive the po-
tential. For the same rmij, the differences between the poten-
tials for different �ij are pronounced in the repulsive part of
the potential �i.e., for rij �rmij� but can be not negligible in
the attractive part.

In the following, to define the dimensionless variables, the
length �ij at which the potential is equal to zero �“the atomic
diameter”� has been used instead of rmij. The ratios rmij /�ij
for all potentials tested are indicated in Table I. From this
table, it appears that a LJ potential with a repulsive coeffi-
cient � is very similar to �i.e., has the same rmij and a similar
�ij� an exp potential with a repulsive coefficient �+2.

B. Dimensionless and reduced variables

When using a spherical potential, it is convenient to use
dimensionless variables, which are for the thermodynamic
properties,

T* =
kBT

�x
, �* =

N�x
3

V
, and P*�T*,�*� = P

�x
3

�x
�4�

where T is the temperature, N the number of particles, V the
volume of the simulation box, P the pressure of the system,
and �x and �x the characteristic molecular parameters of the
studied fluid �in pure fluids �x and �x are simply respectively
equal to � and � of the fluid involved�. It should be noted
that the dimensionless pressure is a universal function, for a
given potential form, of T* and �*.

In addition, a similar procedure can be achieved for trans-
port properties �14,15�. The dimensionless viscosity, which is

to define the reduced Tr, �r, and Pr for each

16 18 20 22

1.125 1.071 1.028

0.326 0.33 0.333

0.109 0.106 0.101

1.157 1.088 1.039 1

0.326 0.327 0.329 0.332

0.112 0.105 0.102 0.098

r the various potentials.

16 18 20 22

1.10305 1.09587 1.08980

1.11284 1.103631 1.09619 1.09
used
ij fo
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a unique function for a given potential form, is simply

�*�T*,�*� = �
�x

2

�mx�x

�5�

where mx is the characteristic molecular weight of the fluid
and � is the dynamic viscosity.

One may note that, when expressing a dynamic property
in this set of dimensionless variables, the contributions of the
thermodynamic state and of the molecular parameters are
decoupled �16�.

The critical point position, defined by the critical tempera-
ture Tc

* and the critical density �c
*, is strongly dependent on

the choice of the potential and its repulsive exponent. There-
fore, to perform a consistent comparison between the results
for different potentials, we have used the classical thermody-
namic reduced conditions �15,16� which are, in this work,
defined as

Tr =
T*

Tc
* , �r =

�*

�c
* , and Pr =

P*

Pc
* . �6�

By using such scaling, and assuming it as adequate, i.e., a
corresponding-states law, a given set of Tr and �r will corre-
spond to the same physical state �relatively to the critical
point� whatever the potential and its repulsive coefficient.
Indeed, if the reduced pressure is the same for two different
potentials, then a corresponding-states approach is possible
between the two potentials.

C. Nonequilibrium molecular dynamics

To compute the pressure and the viscosity, we have used a
homemade code in FORTRAN 90. This code is based on the
Verlet velocity algorithm to integrate the equation of motion.
The usual periodic boundary conditions and minimum image
convention were applied. In order to limit finite-size effects
and to obtain a good accuracy on the value obtained, we

TABLE III. Reduced thermodynamic states in which simula-
tions have been performed.

State 1 State 2 State 3 State 4 State 5 State 6

Tr 0.8 1 1 2 2 2

�r 2.5 0.5 2 0.5 1 2

TABLE IV. Dimensionless pressure for different
the fluid.

State LJ 10-6 LJ 12-6 LJ 14

1 1.156±0.015 1.042±0.012 1.022±0

2 0.129±0.003 0.114±0.002 0.107±0

3 0.543±0.005 0.485±0.004 0.472±0

4 0.436±0.003 0.393±0.004 0.376±0

5 0.931±0.007 0.849±0.005 0.812±0

6 3.516±0.025 3.343±0.022 3.317±0
061201
have performed simulations on systems composed of 1500
particles. To ensure a sufficient statistical precision, we have
performed simulations on 107 time steps. The dimensionless
time step t*= �t /rm��� /m�1/2 has been taken equal to 0.002. A
truncated potential with a cutoff radius rc equal to 2.5rm has
been used. A long-range correction for pressure was included
in the computation.

Various algorithms are available to compute the viscosity
through MD simulations �17�, based on the equilibrium
�EMD� or nonequilibrium �18� �NEMD� approach. Nonequi-
librium approaches imply a perturbation of the system. Such
perturbation may be used to study non-Newtonian viscosity
or the thermodynamic behavior of fluids under shear
�18–21�, using the well-known SLLOD �18� algorithm, for
example. With these techniques, if a sufficiently weak per-
turbation is applied, the classical dynamic viscosity may be
extrapolated.

Among these nonequilibrium approaches, we have chosen
to use a boundary-driven nonequilibrium scheme developed
by Müller-Plathe �22�, which provides reliable results in a
reasonable amount of CPU time �23,24�. As indicated in
�22�, this NEMD approach is simple and keeps constant the
overall energy and momentum of the system without any
constraint on these quantities. A comparison of the results
given by this scheme with more classical techniques �SLLOD

and EMD� will be provided in the following section.
In this technique, the simulation box is divided in 32 slabs

along the z direction. Then, the fluid is sheared using a net
exchange of the momentum along the direction x �perpen-
dicular to z�, which is performed between the central part of
the simulation box, slabs 16 and 17, and the edge layers, slab
1 and 32, to conserve the periodic boundary conditions.
Hence, this scheme does not need a modification of the
boundary conditions like for example the Lee-Edwards
boundary conditions �18�.

To perform the net exchange of momentum, we look for
the two particles in slabs 1 and 32 with the largest negative x
components of the momentum and for the two particles in
slabs 16 and 17 with the largest positive x components of the
momentum. Then, we exchange x components of the veloc-
ity between the particles involved. This procedure keeps con-
stant the overall energy and momentum and corresponds to a
redistribution in the simulation box of a certain amount of
momentum �22�. This exchange is done every A time steps to
avoid too large shear. After a transient stage, the system
tends toward a stationary state and the viscosity of the sys-
tem is simply deduced from the Newton’s law. At the station-

ard-Jones potentials and for the six various states of

LJ 16-6 LJ 18-6 LJ 20-6

1.054±0.011 1.084±0.013 1.053±0.012

0.102±0.002 0.099±0.001 0.096±0.002

0.488±0.006 0.486±0.004 0.475±0.004

0.358±0.003 0.348±0.004 0.339±0.003

0.797±0.006 0.782±0.007 0.767±0.007

3.392±0.023 3.419±0.029 3.424±0.017
Lenn
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ary state in the linear response regime, the shear rate is
evaluated thanks to the local velocity computed in each slab.

The slabs where the exchanges are performed have been
discarded to measure the shear rate. The exchange frequency
needed in this algorithm has been taken equal to 300 to avoid
any disturbances �24�. Such a large value of A induces a
weak perturbation, and corresponds to a dimensionless shear
rate always smaller than 0.005.

A simulation is composed of two steps: the first one con-
sists in equilibrating the system to a desired temperature by
imposing the temperature and the second one corresponds to
the application of the NEMD scheme. In addition, as long as
there is a transient state before the velocity gradient becomes
stationary, the first 2�105 time steps of the NEMD simula-
tions have been discarded for the measurement.

Using these numerical parameters, the statistical errors
produced on viscosity are around +/−3%, except in dense
phases where errors may reach 5%, and are around +/−1%
on pressure.

It should be mentioned that such a scheme, with a suffi-
ciently weak perturbation, does not warm up the system
�22�. Nevertheless, as the duration of the simulations are
important, to keep the temperature stable, we have used
a Berendsen thermostat �25� with a large time constant
	T=1000t*.

TABLE V. Dimensionless pressure for different e
fluid.

State Exp 12-6 Exp 14-6 Exp 16

1 1.104±0.010 1.176±0.014 1.166±0

2 0.122±0.002 0.111±0.003 0.103±0

3 0.503±0.006 0.506±0.004 0.491±0

4 0.416±0.004 0.385±0.003 0.364±0

5 0.881±0.007 0.833±0.007 0.801±0

6 3.261±0.031 3.323±0.023 3.347±0

FIG. 1. Dependence on the state of the reduced pressure relative
to the reduced pressure of the Lennard-Jones 12-6 potential, for the
various Lennard-Jones �-6 potentials: �= ���10, ��� 14, ��� 16,

��� 18, and ��� 20.

061201
D. Comparisons with previous literature results
on molecular dynamics simulation

A test of the ability of our own code to provide consistent
results on a LJ 12-6 pure fluid has been performed. First, the
LJ viscosity has been evaluated at the classical state close to
the triple point TLJ

* =0.722 and �LJ
* =0.8442. For this state, we

have found a dimensionless viscosity �* of 3.21±0.11,
which is consistent with the literature �26� �EMD and SLLOD

algorithms�.
Then, for different thermodynamic states, the results have

been compared with those coming from a reliable study us-
ing equilibrium molecular dynamics on Lennard-Jones 12-6
particles �27�. Simulations have been performed at TLJ

* =1
and �LJ

* =0.7 and 0.9 and at TLJ
* =2.5 for �LJ

* going from 0.3 to
0.9 with a step of 0.2.

To estimate the reliability of the Nc results, we have
evaluated the average absolute deviation DAA

DAA =
1

Nc
�
i=1

Nc

100	1 −
nthis work

*

nMeier
* 	 �7�

and the maximal deviation DMx

DMx = max�100	1 −
�this work

*

�Meier
* 	� �8�

ential potentials and for the six various states of the

Exp 18-6 Exp 20-6 Exp 22-6

1.011±0.012 0.933±0.01 0.907±0.009

0.097±0.003 0.094±0.002 0.091±0.002

0.432±0.007 0.420±0.005 0.412±0.005

0.346±0.004 0.335±0.004 0.327±0.005

0.767±0.007 0.748±0.005 0.736±0.005

3.257±0.027 3.232±0.019 3.246±0.025

FIG. 2. Dependence on the state of the reduced pressure relative
to the reduced pressure of the Lennard-Jones 12-6 potential, for the
various exponential �-6 potentials: �= ��� 12, ��� 14, ��� 16, ���
xpon

-6

.012
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.005
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18, ��� 20, and ��� 22.
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which are both expressed as percentages.
For these six points, we have obtained DAA of 1.64%, and

a DMx of 3.48% �28�. It is worth noticing that the results are
in good agreement despite the fact that the two techniques
used are different, equilibrium and nonequilibrium methods,
and that some parameters differ �e.g., Meier �27� uses a cut-
off radius between 5� and 6.5�, and we use a cutoff radius
equal to 2.5rm, i.e., about 2.8��.

For the same six points, we have compared our results on
pressure with the one provided by the equation of state of
Kolafa and Nezbeda �29�. We have obtained an average ab-
solute deviation of 0.69%, and a maximum deviation of
1.84%. The results are reasonably good compared to the in-
herent statistical errors of the simulations.

III. RESULTS

A. Methodology

Molecular dynamics results are mainly dependent on the
choice of the fluid model, i.e., in our case the interaction
potential. So simulations have been performed on the two
families of potentials described by Eqs. �1�–�3�. The idea is
to evaluate their ability to simultaneously reproduce a static
and a dynamic property, respectively, the pressure and the
viscosity, of some simple real fluids.

For the LJ potential, � varies from 10 to 20 with a step of
2 and for the exp potential, � varies from 12 to 22 with a step
of 2 �which corresponds to a similar range of repulsive slope
for both potentials�. This range of � for both potentials cov-
ers most of the usual values deduced in the low-density limit
by the evolved kinetic theory for simple fluids �30�. Thus, 12
different potential shapes were tested.

In addition, to compare as accurately as possible the re-
sults for various potentials, we have performed simulations
for the same sets of reduced thermodynamic conditions Tr
and �r �see Eq. �6��. The critical dimensionless values Tc

* and
�c

* needed in Eq. �6� have been taken from �13�, except for
the LJ 10-6 which has been extrapolated from the values for
�
11 using a polynomial form. They are summarized in
Table II.

To cover a large range of thermodynamic states, without
too many simulations, we have chosen six different charac-
teristic states �see Table III�, a liquid one �state 1�, two on the
critical isotherm �states 2 and 3�, and three supercritical ones
�states 4, 5, and 6�.

TABLE VI. Dimensionless viscosity for differen
of the fluid.

State LJ 10-6 LJ 12-6 LJ 14

1 1.778±0.064 1.927±0.094 2.096±0

2 0.210±0.004 0.193±0.005 0.182±0

3 0.882±0.024 0.896±0.019 0.959±0

4 0.345±0.007 0.329±0.008 0.302±0

5 0.452±0.012 0.424±0.011 0.427±0

6 0.965±0.025 1.013±0.031 1.083±0
061201
B. Molecular dynamic simulation for both potential types

Dimensionless pressure results, Eq. �4�, are given in
Tables IV and V. To compare the results for both potentials
and for the various repulsive exponents, the comparison
should be done on the reduced pressure Pr defined by Eq.
�6�. As the most usual potential form is the Lennard-Jones
12-6 potential, the ratio between the reduced pressure for
each potential and the reduced pressure for the Lennard-
Jones 12-6 potential is presented �see Figs. 1 and 2�.

Figures 1 and 2 show that the reduced pressures are
strongly dependent on the repulsive exponent, as well as to
the functional form of the repulsive part. In addition, the
reduced pressure increases generally with the repulsive ex-
ponent, the effect being important in dense states �states 1, 3,
and 6�. Such results indicate that a perfect corresponding-
states scheme is not possible between potentials of dissimilar
repulsive exponents and different functional forms of the re-
pulsive part. Nevertheless, for moderate and low densities,
the discrepancies are not large. In addition, we can suspect
that the behavior is slightly affected by the intrinsic impre-
cision of the critical values used.

The behavior of the dimensionless viscosity, Eq. �5�, is
given in Tables VI and VII. As long as the “critical” viscosity
is not known �in fact the viscosity diverges close to the criti-
cal point�, no direct comparison could be achieved through a
reduced viscosity. Nevertheless, when looking at the dimen-
sionless viscosity, it appears that for both potentials viscosity
increases when repulsive slope increases for dense systems
�states 1, 3, 6� and decreases slightly for low- and medium-
density systems �states 2, 4, 5�.

So the results for different potential forms and different
repulsive exponents are not transferable from one to another
through a corresponding-states scheme. This result is impor-
tant as it implies that these various potentials will not be
equivalent in representing real fluid values.

C. Application to real fluids

Once the results were obtained on the model fluids, we
have tested the possibility of the various potentials to predict
at the same time, with the same set of molecular parameters,
both the pressure and the viscosity of real fluids. Such a
comparison implies using an accurate equation of state
�EOS� and a correlation on viscosity as precise as possible
for each of the tested fluids. For each compound, the most

nard-Jones potentials and for the six various states

LJ 16-6 LJ 18-6 LJ 20-6

2.371±0.096 2.611±0.112 2.861±0.101

0.173±0.005 0.172±0.005 0.166±0.004

0.996±0.027 1.046±0.025 1.071±0.031

0.285±0.009 0.289±0.006 0.279±0.006

0.427±0.012 0.419±0.013 0.413±0.01

1.139±0.029 1.194±0.027 1.231±0.029
t Len

-6

.082

.004

.031

.006

.009

.017
recent correlation was chosen. In addition, this comparison
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has been restricted to simple fluids �i.e., not polar, and not
too aspherical� to keep a certain consistency.

The fluids tested are the following �EOS and correlation�:
methane �31,32�, ethane �33�, argon �34,35�, oxygen �34,36�,
nitrogen �34,37�, and air �34,38�. Notice that air is a mixture.
The deviation on a quantity 	 �representing P or ��, is de-
fined as

DAA =
1

6�
i=1

6

100	1 −
	i

MD

	i
corr	 �9�

where the subscript i denotes the state, MD the results by
molecular dynamic simulations, and corr, those coming from
the EOS or the correlation on viscosity. The maximum abso-
lute deviation DMx is defined as

DMx = max�100	1 −
	i

MD

	i
corr	� . �10�

For each potential and each compound, we have determined
the set of molecular parameters �� and �� that minimize the

FIG. 3. Application of the LJ and exp results on viscosity and
pressure for various � to argon: Circles represent DMx, up triangles
the DAA on viscosity and down triangles the DAA on pressure.

TABLE VII. Dimensionless viscosity for differen
the fluid.

State Exp 12-6 Exp 14-6 Exp 16

1 1.764±0.085 2.082±0.062 2.335±0

2 0.199±0.004 0.187±0.005 0.179±0

3 0.862±0.019 0.941±0.027 0.996±0

4 0.333±0.006 0.306±0.007 0.296±0

5 0.442±0.009 0.418±0.012 0.415±0

6 0.932±0.031 1.006±0.019 1.069±0
061201
quantity DMx defined as half the sum of the DMx on viscosity
and on pressure. In some sense we can consider that this set
is the optimum set.

Results, in terms of DMx and DAA are shown in Figs. 3–6.
From these figures, it appears that the results provided by the
LJ and exp potentials are very similar whatever the com-
pound, thus no real improvement of results of the exp poten-
tial over the LJ one can be found. Therefore, for this range of
thermodynamic states and for the studied properties, the
choice of an exp potential is questionable �due to its CPU
time needs compared to a LJ one�.

In addition, it is interesting to note that, except for meth-
ane, a clear minimum appears for each compound �see Figs.
3–6�. Furthermore, the best results are obtained for �=12 for
the LJ potential and for �=14 for the exp one �except for
methane�. This result is interesting and important, because it
partly explains why the LJ 12-6 potential is still so widely
used, despite the lack of theoretical background of the repul-
sive coefficient �exponent 12�. Concerning methane, Fig. 5

FIG. 4. Application of the LJ and exp results on viscosity and
pressure for various � to oxygen �black symbols� and nitrogen
�open symbols�. Legend is the same as in Fig 3.

ponential potentials and for the six various states of

Exp 18-6 Exp 20-6 Exp 22-6

2.428±0.081 2.559±0.079 2.864±0.105

0.169±0.005 0.165±0.004 0.162±0.004

1.011±0.019 1.033±0.024 1.067±0.026

0.284±0.006 0.272±0.005 0.275±0.005

0.413±0.011 0.406±0.017 0.406±0.012

1.111±0.024 1.150±0.028 1.226±0.032
t ex

-6

.095

.004

.021

.005

.014

.022
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indicates that the best results are obtained for the lowest �
for both potentials �i.e., 10 for the LJ potential and 12 for the
exp one�.

Another important point is that this approach clearly
shows that, except for methane, with the same set of molecu-
lar parameters, pressure and viscosity of some simple pure
compounds �spherical such as argon and even slightly as-
pherical such as ethane� can be correctly estimated using
only the classical LJ 12-6 potential. Furthermore, it should
be noted that, for air, which is a mixture mimicked by a
single pseudocompound, results are remarkably good despite
the simplicity of the approach.

Thus, using a LJ 12-6 potential, the DMx on both proper-
ties is generally smaller than 6%, which is excellent taking
into account the different intrinsic errors and the diversity of
fluid states tested. In addition, the DAA on each property is
always smaller than 5%. This is particularly interesting for
mixtures, because the choice of a LJ 12-6 potential for all
components avoids the need of any combining rule on the �
parameters. Such a combination rule may cause the results to
deteriorate in mixtures if the components are modeled by LJ
�-6 or exp �-6 potentials with different �.

The optimum sets of molecular parameters deduced from
this approach, for each compound tested, are given in Table
VIII. It should be noted that the values are consistent with
what is classically used in molecular simulations, despite dif-
ferences �e.g., for Ar represented by a LJ 12-6, �=3.405 Å
and �=996 kJ/mol in �39�, which is very close to the values
obtained here, �=3.408 Å and �=989 kJ/mol; see Table
VIII, row LJ12�.

In addition, concerning the air mixture, it is interesting to

FIG. 5. Application of the LJ and exp results on viscosity and
pressure for various � to methane �black symbols� and ethane �open
symbols�. Legend is the same as in Fig 3.
compare the set of molecular parameters given in Table VIII,

061201
for a given potential, to those deduced from a one-fluid ap-
proximation �15�. This approach assumes that it is possible to
lump the mixture compounds into a pseudocompound
“equivalent” to the mixture. The molecular parameters of the
pseudocompound are deduced from those of each compound
and from a one-fluid model. We have used the classical van
der Waals one-fluid approximation which is written, for an
N-component mixture, as

mx = �
i=1

N

ximi, �11�

�x
3 = �

i=1

N

�
j=1

N

xixj�ij
3 , �12�

�x�x
3 = �

i=1

N

�
j=1

N

xixj�ij�ij
3 , �13�

where �x, �x, and mx are the molecular parameters of the
equivalent pseudocompound and xi are the molar fractions.

As an example, this one-fluid approximation is applied to
the Lennard-Jones 12-6 potential. This approach yields �
=3.562 Å and �=854 kJ/mol �with a molar composition of
78.1% of N2, 20.95% of O2, and 0.95% of Ar�, which is very
close to what is directly found ��=849.2 kJ/mol and �
=3.562 Å; see Table VIII, row LJ12�. Using the molecular
parameters deduced from the one-fluid model, we obtained
for viscosity DAA=2.54% �DMx=5.09% � and for pressure
DAA=2.33% �DMx=3.37% �. This result indicates that for
such simple mixtures this one-fluid model is efficient, which

FIG. 6. Application of the LJ and exp results on viscosity and
pressure for various � to air. Legend is the same as in Fig 3.
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is consistent with previous observations �40� and could be
valuable to provide values in simple mixtures �not too asym-
metric ones�.

IV. CONCLUSIONS

As previously mentioned in the Introduction, presently
there is a demand for force fields to be able to accurately
describe several properties at the same time, which is not an
easy task especially when static and dynamic properties are
simultaneously involved. In this work, using molecular dy-
namics simulation, the viscosity �dynamic property� and the
pressure �static property� of spherical fluid particles interact-
ing through either Lennard-Jones �-6 or exponential �-6 po-
tentials have been computed. Notice that, up to now, less
attention has been paid to the exp potentials in molecular
simulations.

Simulations have been carried out for various repulsive
slopes �� going from 10 to 20 for the Lennard-Jones poten-
tial and from 12 to 22 for the exponential one, both with a
step of 2�. Six different thermodynamic states have been
tested that cover sub- to supercritical temperature and low to
high density. The simulations have been performed for the
same set of reduced thermodynamics conditions by using the
critical temperature and density as references. Such proce-
dure allows a consistent comparison of the results obtained
for the various potentials.

It has been found that generally, for both potentials, the
reduced pressure decreases when the repulsive coefficient
decreases, the effect being more pronounced in dense states.
In addition, the results show that no corresponding-states ap-

TABLE VIII. Values of the optimum atomic dia
potentials and compounds.

Argon Nitrogen Oxyge

� � � � �

LJ10 906.6 3.415 745.4 3.617 914.4

LJ12 989.0 3.408 820.5 3.614 994.1

LJ14 1043.3 3.393 851.5 3.590 1061.7

LJ16 1092.6 3.395 903.6 3.596 1108.6

LJ18 1136.3 3.392 948.1 3.596 1164.5

LJ20 1170.2 3.394 986.7 3.600 1184.7

Exp12 927.1 3.413 775.9 3.626 935.0

Exp14 1013.9 3.404 848.9 3.616 1023.6

Exp16 1082.4 3.400 882.6 3.600 1084.4

Exp18 1127.5 3.400 935.2 3.603 1132.9

Exp20 1160.3 3.400 977.2 3.607 1172.1

Exp22 1184.3 3.397 1013.0 3.603 1200.4
061201
proach is possible between potentials having different repul-
sive exponents as well as different functional forms.

This study has been applied on real simple fluids �argon,
oxygen, nitrogen, methane, and ethane� and one mixture
�air�. The results have been compared with the most accurate
equations of states �for pressure� and correlations �for viscos-
ity� available in the literature.

It appears that, whatever the compound, a good accuracy
�DAA lower than 5%� on pressure and viscosity using the
same set of molecular parameters for both properties can be
achieved for the studied states, by each potential family �LJ
and exp ones�. In addition, these results show that the exp
potential does not yield strongly improved results compared
to the Lennard-Jones one. Furthermore, except for methane,
the best results are obtained for the Lennard-Jones 12-6 and
the exponential 14-6 potentials. This important result may
explain, why, despite no theoretical basis, the Lennard-Jones
12-6 is so widely used.

Finally, concerning mixture, it is shown that the usual van
der Waals one-fluid model, applied on the LJ 12-6 potential,
is able to perform extremely well, at least for simple mix-
tures like air.
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r � �in Å�, and potential depth � �in kJ/mol� for all

Methane Ethane Air

� � � � � �

1134.6 3.722 1781.7 4.237 777.3 3.567

1212.6 3.704 1977.9 4.239 849.2 3.562

1294.2 3.700 2125.5 4.228 904.0 3.546

1358.6 3.704 2220.2 4.227 948.7 3.549

1404.5 3.702 2310.7 4.223 987.0 3.547

1440.0 3.701 2369.7 4.218 1019.1 3.549

1150.3 3.727 1817.7 4.233 796.4 3.568

1260.2 3.705 2038.6 4.234 877.6 3.563

1323.6 3.702 2171.7 4.226 937.4 3.555

1380.0 3.703 2265.7 4.226 977.0 3.554

1432.5 3.705 2346.0 4.226 1011.1 3.555

1460.5 3.701 2403.1 4.220 1037.8 3.553
mete

n

�

3.384

3.368

3.364

3.363

3.360

3.356

3.384

3.365

3.361

3.362

3.362

3.357
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